Music Emotion Recognition Based on a Neural Network with an Inception-GRU Residual Structure

نویسندگان

چکیده

As a key field in music information retrieval, emotion recognition is indeed challenging task. To enhance the accuracy of classification and recognition, this paper uses idea inception structure to use different receptive fields extract features dimensions perform compression, expansion, recompression operations mine more effective connect timing signals residual network GRU module features. A one-dimensional (1D) Convolutional Neural Network (CNN) with an improved Inception Gate Recurrent Unit (GRU) was presented tested on Soundtrack dataset. Fast Fourier Transform (FFT) used process samples experimentally determine their spectral characteristics. Compared shallow learning methods such as support vector machine random forest deep method based Visual Geometry Group (VGG) CNN proposed by Sarkar et al., 1D Inception-GRU demonstrated better performance tasks, achieving 84%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Inception-Residual Convolutional Neural Network for Object Recognition

Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than in a few DCNN architectures. On the other hand, In...

متن کامل

MediaEval 2015: Music Emotion Recognition based on Feed-Forward Neural Network

In this paper, we describe the music emotion recognition system named as JU_NLP to find the dynamic valence and arousal values of a song continuously considered from 15 second to its end in an interval of 0.5 seconds. We adopted the feed-forward networks with 10 hidden layers to build the regression model. We used the correlation-based method to find out suitable features among all the features...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12040978